

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 7942-7948

Brønsted-acid-catalyzed coupling of electron-rich arenes with substituted allylic and secondary benzylic alcohols

Jean Le Bras* and Jacques Muzart

UMR 6519 'Réactions Sélectives et Applications', Boîte 44, CNRS-Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France

> Received 16 February 2007; revised 27 April 2007; accepted 17 May 2007 Available online 24 May 2007

Abstract—*p*-Toluenesulfonic acid and triffic acid catalyze efficiently the coupling of electron-rich arenes with allylic and benzylic alcohols. Reactions are conducted under mild conditions, in air, and in the absence of solvent. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Arenes and heteroarenes have proven to be quite attractive targets because of the extensive use of these compounds in the dyestuff, perfume, flavor, agriculture, and pharmaceutical industries. The coupling of allylic and benzylic groups with arenes can be seen as electrophile–nucleophile combinations, arenes being the nucleophiles and allylic or benzylic compounds being the electrophiles. Mild methodologies for such coupling include the Mo(II)-catalyzed allylic substitution of allylic alcohols or acetates with electron-rich aromatics,¹ the use of lanthanide and actinide triflates,² cooperative catalysts in heterobimetallic regime,³ the Rh-and Ir-catalyzed allylations of electron-rich arenes with allylic tosylates,⁴ and heterogeneous catalysts.⁵

Recently, a significant advance, due to Beller et al., has been seen in the use of sub-stoichiometric amounts of transitionmetal compounds for arylation of benzylic alcohols and carboxylates.⁶ Nevertheless, interest in metal-free and solvent-free reactions is progressing because of both economical concerns and increased environmental awareness.⁷ Therefore, Brønsted acids have received recent attention as a simple alternative to toxic and precious metals, and the formation of C–X bonds (X=C, N, O, S) has been reported by different groups. Various Brønsted acids have been found to catalyze the addition of nitrogen and oxygen nucleophiles to olefins.⁸ The formation of carbon–carbon bonds was reported via the cyclization of siloxy alkynes,⁹ intermolecular Friedel–Crafts reactions using aliphatic alcohols,¹⁰ methylenecyclopropane,¹¹ acetals,¹² aldehydes¹³ and imines,¹⁴ alkylation of anilines with styrenes,¹⁵ acylation of aromatic compounds,¹⁶ addition of 1,3-dicarbonyl compounds to alkenes and alcohols,¹⁷ and nucleophilic substitution of propargylic alcohols.¹⁸

Direct arylation of allylic and benzylic alcohols under conditions leading to water as the only by-product would represent a green process. Surprisingly, such a simple approach has not been described with electron-rich arenes, probably because homogeneous Brønsted acids were not found to be effective catalysts in Friedel–Crafts reactions, in the past.^{19,20} However, while this work was in progress, Sanz et al. have reported a similar procedure in organic medium for the nucleophilic substitution of alcohols.²¹ Herein, we report a parallel approach, which tolerates substrates that were previously regarded as incompatible with strong Brønsted acids.

2. Results and discussion

According to the literature, the alkylation of π -electron-rich heteroaromatics, such as furans, by the standard Friedel– Crafts approach was impractical because the Brønsted and Lewis acid catalysts employed induced ring opening and polymerization.¹⁹ While studying the arylation of (*E*)-4-phenylbut-3-en-2-ol (**1a**) with 5 equiv of 2-methylfuran (**2a**), we observed that Brønsted acids can be good catalysts under mild conditions (Table 1). While no reaction occurred in the presence of CH₃CO₂H (20 mol %) in dry CH₂Cl₂, a mixture of **3aa** and **4aa** (**3aa/4aa**, 80/20) was obtained in 60% yield with HCl as the catalyst (entries 1 and 2). Using CF₃CO₂H instead of HCl increased the yield, especially when the reaction was carried out without solvent (entries 3 and 4). Stronger acids shortened the reaction time to 1 h

Keywords: Brønsted acid; Friedel-Crafts; Solvent free; Green chemistry.

^{*} Corresponding author. Tel.: +33 3 26 91 32 46; fax: +33 3 26 91 31 66; e-mail: jean.lebras@univ-reims.fr

Table 1. Reaction of 2-methylfuran with (E)-4-phenylbut-3-en-2-ol^a

Entry	Catalyst (mol %)	Solvent	Time (h)	Yield of 3aa+4aa (%)
1	CH ₃ CO ₂ H (20)	CH ₂ Cl ₂	8	0
2	HCl (20)	CH_2Cl_2	8	60
3	CF ₃ CO ₂ H (20)	CH_2Cl_2	8	82
4	CF ₃ CO ₂ H (20)		8	87
5	H_2SO_4 (5)		1	83
6	$CF_3SO_3H(5)$		1	87
7	p-TolSO ₃ H·H ₂ O (5)		1	87
8 ^b	p-TolSO ₃ H·H ₂ O (5)		2	80
9	p-TolSO ₃ H·H ₂ O (20)		1	75
10	p-TolSO ₃ H·H ₂ O (1)		2	61

^a Reaction conditions: **1a** (1.0 mmol), **2a** (5.0 mmol), solvent (0 or 1 mL), 50 °C.

^b 2a (1.1 mmol).

Table 2. Reactions of allylic and benzylic alcohols with arenes^a

and the best results were obtained with 5 mol % of triflic acid (5) or monohydrated *p*-toluenesulfonic acid (6) (entries 6 and 7). The use of only a slight excess of **2a** had little impact on the yield (entry 8), but higher acid concentration led to some decomposition (entry 9). The process was less efficient with 1 mol % of acid (entry 10). Regioselectivity was close to that observed in the Mo(II)-catalyzed coupling of **2a** with (*E*)-4-phenylbut-3-en-2-yl acetate.^{1b} Indeed, the Brønsted acid conditions led mainly to the formation of the C–C bond between the 5-position of the furan ring and the methyl terminus of the allyl moiety. Note that this reaction is not sensitive to air or moisture and can be used with furan derivatives, which is a rare feature of Friedel–Crafts-type chemistry.⁶

We were interested in the reactivity of other alcohols and arenes (Table 2). Triflic acid $(5)^{22}$ and monohydrated *p*-toluenesulfonic acid (6) were selected as catalysts. Allylic alcohols, such as (*E*)-4-phenylbut-3-en-2-ol (1a), (*E*)-1,3-diphenylprop-2-en-1-ol (1b), and cinnamyl alcohol (1c) react with 2a, 1,3-dimethoxybenzene (2b), anisole (2c), and

Entry	1	2	Catalyst	<i>t</i> (h)	Product	Yield (%)
1	1a	2b	5	1	3ab/4ab (85/15)	86
2	1 a	2c	5	2	3ac	80
3	1a	2d	5	2	3ad/4ad (95/5)	80
4 ^{b,c}	1 a	2e	6	2	3ae/4ae (45/55)	55
5	1 a	2f	6	2	3af/4af (75/25)	62
6	1b	2a	5	1	3ba	95
7	1b	2b	5	1	3bb	80
8	1b	2c	5	2	3bc	83
9	1b	2d	5	2	3bd	85
10 ^{b,c}	1b	2e	6	2	3be	95
11	1b	2f	6	2	3bf	83
12 ^b	1c	2a	6	2	3ca/4ca (75/25)	71
13	1c	2b	6	2	3cb/4cb (90/10)	70
14	1c	2c	6	2	3cc	73 ^d
15	1c	2d	6	2	3cd	64
16	1d	2a	5	9	3da	90
17	1d	2b	5	9	3db	70
18	1d	2c	6	9	3dc	92
19	1d	2d	6	9	3dd	86
20 ^b	1e	2a	6	2	3ea	81
21	1e	2b	6	2	3eb	78
22	1e	2c	6	2	3ec	68
23	1e	2d	6	2	3ed	87
24 ^{b,c}	1e	2e	5	2	3ee	66
25	1e	2f	5	2	3ef	69

^a Reaction conditions: alcohol (1.0 mmol), arene (5.0 mmol), catalyst (0.05 mmol), 50 °C.

 $^{\rm b}\,$ Performed in dry CH_2Cl_2 (1 mL).

^c Performed with 1.0 equiv of arene.

^d Isolated with traces of a by-product corresponding probably to 1-cinnamyl-2-methoxybenzene.

benzofuran (2d) in good to excellent yields and short reaction times. The reaction of 2a, 2b, and 2d with 1a and 1c exhibited good to high regioselectivity at the less hindered terminus of the allylic moiety (entries 1, 3, 12, 13, and 15). In all cases, the trans-configuration of the double bond was preserved. Arenes were alkylated regioselectively as observed in other processes (Scheme 1).²³ Note that **2c** reacted with 1a with high selectivity through the *p*-position of the aromatic ring at the methyl terminus of the allyl moiety (entry 2). Indole (2e) and pyrrole (2f) also react with 1a and **1b** in moderate to excellent yields (entries 4, 5, 10, and 11). with regioselectivity similar to that observed in other processes (Scheme 1), 24 but no reaction was observed with 1c. Benzylic alcohols such as benzhydrol (1d) and 1-(4-methoxyphenyl)ethanol (1e) also reacted with arenes 2a-d (entries 16–23) and anisole (2c) affording solely the *p*-isomers 3dc and 3ec. Compound 1d gave no reaction with indole (2e) and pyrrole (2f) while 1e reacted in fair yields (entries 24 and 25).

Scheme 1. Regioselectivities observed with 2.

Scheme 2 shows plausible pathways for the reaction. We have observed the formation of bis(diphenylmethyl) ether (7d) during the reaction of 1d with 2a. Reaction of 7d with 2a in the presence of 5 required 8 h to afford 3da in 95%. The coupling probably proceeds through the formation of a stabilized carbocation, which can react with 2 to produce 3 and 4, or with 1 to give ether 7. The latter can regenerate the carbocation and 1 via acid catalysis. The similar reactivity of 1d and 7d and the longer reaction time observed compared to the other examples indicate that the stability of 7d slows down the reaction, probably via steric effects. The absence of reactivity of 1d with 2e and 2f also shows that other factors affect the efficiency of the process.

Scheme 2. Plausible pathways for the acid-catalyzed reaction.

3. Conclusion

In summary, we have shown that *p*-toluenesulfonic acid and triflic acid are efficient catalysts for the direct coupling of phenyl-substituted allylic alcohols and secondary benzylic alcohols with electron-rich arenes under mild conditions.

The reaction is operationally simple and can be performed in the absence of solvents. Of special interest are the *para*selectivity observed with anisole and the tolerance of furans, indole, and pyrrole usually classified as 'acid-sensitive' compounds. This metal-free and solvent-free method, which gives water as the only side product, represents a clean and environmental friendly alternative to the already established use of metallic catalysts.

4. Experimental section

4.1. General information

All reagents used were commercially available and of high purity grade. Allylic and benzylic alcohols were obtained by reduction of ketones with NaBH₄ in MeOH. CH₂Cl₂ was distilled over CaH₂ under argon. Column chromatography was conducted over silica gel of 40–63 μ m. NMR spectroscopy was performed with a 250 MHz apparatus in CDCl₃ and referenced to TMS.

4.2. General procedure

A 50 mL round-bottomed flask was charged with alcohol (1.0 mmol), arene (5.0 mmol) and, in some cases, solvent (1 mL). The acid (0.05 mmol) was added at room temperature (PTSA \cdot H₂O) or at 0 °C (CF₃SO₃H). The mixture was heated (oil bath, 50 °C) for the appropriate time. After cooling to room temperature, saturated NaHCO₃ solution (5 mL) was added and the mixture was extracted with Et₂O (5× 5 mL). The organic phase was dried over MgSO₄, filtered, and concentrated under reduced pressure. The excess of arene was removed by distillation and the product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 98/2, then petroleum ether/ethyl acetate 95/5).

Caution: addition of triflic acid to 2-methylfuran gives a violent reaction. The following procedure should be used:

4.3. Typical procedure with triflic acid and 2-methyl-furan

A 50 mL round-bottomed flask was charged with alcohol (1.0 mmol) and CH_2Cl_2 (1 mL) if required and cooled with an ice water bath. CF_3SO_3H (0.05 mmol, 4.0 μ L) was added dropwise in order to prevent the accumulation of a colored gum, followed by the arene (5.0 mmol). The mixture was heated (oil bath, 50 °C) for the appropriate time. The work-up was carried out as for the above general procedure.

4.3.1. (*E*)-**1**-Phenyl-3-(2-methylfuran-5-yl)-1-butene (3aa) and (*E*)-4-phenyl-4-(2-methylfuran-5-yl)-2-butene (4aa).^{1b} Colorless oil. Compound 3aa: ¹H NMR (measured in a mixture with 4aa): δ =1.33 (d, *J*=7.0 Hz, 3H, *CH*₃CH), 2.18 (s, 3H, *CH*₃-*furan*), 3.55 (quint, *J*=7.0 Hz, 1H, *CH*CH₃), 5.80–5.84 (m, 2H, =*CH*-*furan*), 6.20 (dd, *J*= 15.9 Hz, *J*=7.2 Hz, 1H, CH=*CH*-CH), 6.36 (d, *J*= 15.9 Hz, 1H, Ar*CH*=CH), 7.05–7.35 (m, 5H, Ar). Compound 4aa: ¹H NMR (measured in a mixture with 3aa): δ =1.63 (ddd, *J*=6.4 Hz, *J*=1.5 Hz, *J*=0.9 Hz, 3H,

7945

*CH*₃CH=CH), 2.15 (s, 3H, *CH*₃-*furan*), 4.53 (d, J=7.5 Hz, 1H, Ar*CH*), 5.41 (dqd, J=12.9 Hz, J=6.4 Hz, J=1.1 Hz, CH=*CH*CH₃), 5.75–5.84 (m, 1H, CH*CH*=CH), 5.85–5.93 (m, 2H, =*CH*-*furan*), 7.05–7.35 (m, 5H, Ar).

4.3.2. (E)-1-Phenyl-3-(2,4-dimethoxyphenyl)-1-butene (3ab) and (E)-4-phenyl-4-(2,4-dimethoxyphenyl)-2-butene (4ab). Pale yellow oil. Compound 3ab: ¹H NMR (measured in a mixture with **4ab**): $\delta = 1.38$ (d, J = 7.0 Hz, 3H, CH₃CH), 3.72 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.92– $4.06 \text{ (m. 1H. CHCH_3)}, 6.32-6.47 \text{ (m. 4H. CH=CH. Ar)},$ 7.00-7.34 (m, 6H, Ar). ¹³C NMR (measured in a mixture with **4ab**): δ=20.2, 34.8, 55.3, 55.4, 98.8, 104.2, 126.2, 126.6, 126.9, 127.9, 128.0, 128.5, 135.3, 138.0, 157.8, 159.3. Compound 4ab: ¹H NMR (measured in a mixture with **3ab**): $\delta = 1.69$ (dd, J = 6.4 Hz, J = 0.9 Hz, 3H, CH_3 CH), 3.65 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 5.00 (d, J=7.0 Hz, 1H, ArCH), 5.25–5.45 (m, 1H, CH=CHCH₃), 5.80-5.95 (m, 1H, CHCH=CH), 6.32-6.47 (m, 2H, Ar), 7.00–7.34 (m, 6H, Ar). IR (**3ab/4ab**, film): v=3024, 2998, 2960, 2834, 1612, 1587, 1504, 1465, 1293, 1260, 1208, 1179, 1157, 1133, 1037, 968 cm⁻¹. GC–MS (EI): $t_{\rm R}$ (**4ab**)= $10.8; m/z \ (\%) = 268 \ (94) \ [M^+], 253 \ (74), 237 \ (46), 207 \ (55),$ 129 (63), 115 (100); $t_{\rm R}$ (**3ab**)=11.9; m/z (%)=268 (40) [M⁺], 253 (100), 237 (24), 115 (54). ESHRMS: calcd for C₁₈H₂₁O₂: 269.1542. Found: 269.1546.

4.3.3. (*E*)-1-Phenyl-3-(4-methoxyphenyl)-1-butene (**3ac**).^{1b} Colorless oil. ¹H NMR: δ =1.35 (d, *J*=7.0 Hz, 3H, *CH*₃), 3.44–3.57 (m, 1H, *CH*CH₃), 3.69 (s, 3H, *OCH*₃), 6.26–6.30 (m, 2H, Ar*CH*=*CH*), 6.73–6.80 (m, 2H, Ar), 7.05–7.30 (m, 7H, Ar).

4.3.4. (E)-1-Phenyl-3-(benzofuran-2-yl)-1-butene (3ad) and (E)-4-phenyl-(benzofuran-2-yl)-2-butene (4ad). Pale yellow gum. Compound 3ad: ¹H NMR (measured in a mixture with **4ad**): $\delta = 1.63$ (d, J = 7.0 Hz, 3H, CH_3), 3.91 (quint, J=7.0 Hz, 1H, CHCH₃), 6.45 (dd, J=15.9 Hz, J=7.1 Hz, 1H, ArCH=CH), 6.52-6.55 (m, 1H, O-C=CH), 6.61 (d, J=15.9 Hz, ArCH=CH), 7.20–7.62 (m, 9H, Ar). ¹³C NMR (measured in a mixture with 4ad): $\delta = 19.0, 37.2,$ 101.5, 111.1, 120.6, 122.7, 123.5, 126.4, 127.5, 128.7, 128.9, 130.5, 131.3, 137.3, 154.9, 161.7. Compound 4ad: ¹H NMR (selected data measured in a mixture with **3ad**): $\delta = 1.80$ – 1.86 (m, 3H, CH₃), 4.88 (d, J=7.2 Hz, 1H, ArCH), 5.58-5.74 (m, 1H, CHCH₃), 5.90–6.06 (m, 1H, CH=CHCH₃). IR (**3ad/4ad**, pellets): ν =3026, 2967, 2930, 1580, 1493, 1453, 1296, 1254, 1168, 1103, 1033, 1010, 966, 943 $\rm cm^{-1}$. GC-MS (EI): $t_{\rm R}$ (4ad)=10.4; m/z (%)=248 (80) [M⁺], 233 (100), 115 (77); $t_{\rm R}$ (**3ad**)=11.3; m/z (%)=248 (98) [M⁺], 233 (100), 115 (97). Anal. Calcd for C₁₈H₁₆O: C, 87.06; H, 6.49; Found: C, 86.65; H, 6.63.

4.3.5. (*E*)-1-Phenyl-3-(indol-3-yl)-1-butene (3ae) and (*E*)-4-phenyl-(indol-3-yl)-2-butene (4ae).^{1b} Pale yellow gum. Compound 3ae: ¹H NMR (measured in a mixture with 4ae): δ =1.54 (d, *J*=7.0 Hz, 3H, *CH*₃), 3.90 (quint, *J*=7.0 Hz, 1H, *CH*CH₃), 6.42–6.48 (m, 2H, Ar*CH*=*CH*), 6.87–6.91 (m, 1H, *CH*–NH), 6.94–7.40 (m, 9H, Ar), 7.73 (br s, 1H, NH). Compound 4ae: ¹H NMR (measured in a mixture with 3ae): δ =1.67–1.73 (m, 3H, *CH*₃), 4.87 (d, *J*=7.5 Hz, 1H, Ar*CH*), 5.50 (dq, *J*=15.1 Hz, *J*=6.3 Hz, 1H, *CH*CH₃), 5.93 (dd, *J*=15.1 Hz, *J*=7.6 Hz, 1H, *CH*=CHCH₃), 6.74–6.78 (m, 1H, *CH*–NH), 6.94–7.40 (m, 8H, Ar), 7.66 (d, *J*=7.8 Hz, 1H, Ar), 7.73 (br s, 1H, NH).

4.3.6. (E)-1-Phenyl-3-(pyrrol-2-yl)-1-butene (3af) and (E)-4-phenyl-(pyrrol-3-yl)-2-butene (4af). Pale yellow oil. Compound **3af**: ¹H NMR (measured in a mixture with **4af**): $\delta = 1.40$ (d, J = 6.9 Hz, 3H, CH_3 CH), 3.58 (quint, J =6.9 Hz, 1H, CHCH₃), 5.93–5.98 (m, 1H, CH-pyrrole), 6.05– 6.13 (m, 1H, CH-pyrrole), 6.19 (dd, J=15.8 Hz, J=7.8 Hz, CH=CH-CH), 6.40 (d, J=15.9 Hz, ArCH=CH), 6.58-6.68 (m. 1H. CH-pyrrole), 7.10–7.34 (m. 5H. Ar), 7.92 (br s, 1H, NH). ¹³C NMR (measured in a mixture with **4af**): $\delta =$ 19.7, 36.3, 104.3, 108.4, 117.0, 126.3, 127.5, 128.4, 128.6, 128.7, 129.5, 133.9. Compound 4af: ¹H NMR (measured in a mixture with **3af**): $\delta = 1.65$ (ddd, J = 6.4 Hz, J = 1.5 Hz, J=0.7 Hz, 3H, CH₃CH), 4.56 (d, J=7.7 Hz, 1H, ArCH), 5.46 (dqd, J=15.0 Hz, J=6.4 Hz, J=1.0 Hz, CHCH=CH), 5.71–5.85 (m, 2H, CH=CHCH₃, CH-pyrrole), 6.05–6.13 (m, 1H, CH-pyrrole), 6.58-6.68 (m, 1H, CH-pyrrole), 7.10-7.34 (m, 5H, Ar) 7.75 (br s, 1H, NH). IR (3af/4af, film): v=3432, 3025, 2967, 2930, 1561, 1493, 1449, 1115, 1093, 1207, 967 cm⁻¹. GC-MS (EI): $t_{\rm R}$ (4af)=8.5; m/z (%)= 197 (94) [M⁺], 182 (42), 156 (58), 128 (74), 115 (100); $t_{\rm R}$ $(3af)=9.3; m/z \ (\%)=197 \ (94) \ [M^+], \ 182 \ (80), \ 115 \ (100).$ ESHRMS: calcd for C₁₄H₁₆N: 198.1283. Found: 198.1275.

4.3.7. 5-((*E*)-**1**,**3**-Diphenylallyl)-2-methylfuran (3ba). Pale yellow oil. ¹H NMR: δ =2.24 (s, 3H, *CH*₃), 4.84 (d, *J*= 7.2 Hz, 1H, CH=CH*CH*Ar), 5.88–5.99 (m, 2H, =*CH*-*furan*), 6.38 (d, *J*=15.9 Hz, 1H, Ar*CH*=CH), 6.56 (dd, *J*=15.9 Hz, *J*=7.2 Hz, 1H, Ar*CH*=*CH*CH), 7.16–7.40 (m, 10H, Ar). ¹³C NMR: δ =13.7, 48.6, 106.2, 107.6, 126.5, 126.9, 127.5, 128.4, 128.6, 128.7, 130.2, 131.5, 137.2, 141.5, 151.5, 154.4. IR (pellets): *v*=3025, 2885, 1598, 1556, 1494, 1450, 1216, 1154, 1027, 961 cm⁻¹. GC-MS (EI): *t*_R=11.7; *m/z* (%)=274 (80) [M⁺], 231 (48), 215 (42), 192 (78), 115 (100). Anal. Calcd for C₂₀H₁₈O: C, 87.56; H, 6.61; Found: C, 87.75; H, 6.68.

4.3.8. 1-((*E*)-1,3-Diphenyl-2-propenyl)-2,4-dimethoxybenzene (3bb). Pale yellow oil. ¹H NMR: δ =3.75 (s, 3H, *OCH*₃), 3.80 (s, 3H, *OCH*₃), 5.22 (d, *J*=7.1 Hz, 1H, CH= CH*CH*Ar), 6.25 (d, *J*=15.9 Hz, 1H, Ar*CH*=CH), 6.42–6.50 (m, 2H, Ar), 6.66 (dd, *J*=15.9 Hz, *J*=7.0 Hz, 1H, Ar*CH*=*CH*CH), 7.07 (d, *J*=8.9 Hz, 1H, Ar), 7.15–7.40 (m, 10H, Ar). ¹³C NMR: δ =46.6, 55.4, 55.6, 99.0, 104.2, 124.5, 126.2, 126.4, 127.2, 128.3, 128.6, 128.7, 130.0, 130.9, 132.9, 137.7, 143.9, 158.0, 159.6. IR (pellets): *v*=3024, 2999, 2934, 2833, 1610, 1586, 1503, 1451, 1292, 1260, 1207, 1176, 1156, 1116, 1035, 969 cm⁻¹. GC–MS (EI): *t*_R=18.8; *m/z* (%)=330 (10) [M⁺], 192 (28), 165 (44), 115 (48), 91 (77), 77 (100). ESHRMS: calcd for C₂₃H₂₃O₂: 331.1698. Found: 331.1701.

4.3.9. 1-((*E*)-1,3-Diphenyl-2-propenyl)-4-methoxy-benzene (3bc).²⁵ Pale yellow oil. ¹H NMR: δ =3.79 (s, 3H, *OCH*₃), 4.95 (d, *J*=7.3 Hz, 1H, CH=CH*CH*Ar), 6.46 (d, *J*=15.8 Hz, 1H, Ar*CH*=CH), 6.80 (dd, *J*=15.8 Hz, *J*= 7.4 Hz, 1H, ArCH=*CH*CH), 6.94–7.00 (m, 2H, Ar), 7.22– 7.50 (m, 12H).

4.3.10. 2-((*E*)**-1,3-Diphenyl-2-propenyl)benzofuran (3bd).** White solid, mp 85–87 °C. ¹H NMR: δ =4.96 (d, *J*=7.3 Hz, 1H, CH=CH*CH*Ar), 6.34–6.46 (m, 2H, Ar*CH*=CH,

O–C=*CH*), 6.58 (dd, *J*=15.8 Hz, *J*=7.3 Hz, ArCH=*CH*), 7.10–7.46 (m, 14H, Ar). ¹³C NMR: δ =48.8, 104.2, 111.3, 120.8, 122.8, 123.8, 126.6, 127.3, 127.8, 128.5, 128.7 (2C), 128.8, 129.1, 132.4, 137.0, 140.5, 155.2, 159.4. IR (pellets): *v*=3080, 3028, 3022, 2924, 2875, 2850, 1568, 1579, 1490, 1453, 1254, 1163, 1070, 972, 960 cm⁻¹. GC–MS (EI): *t*_R=18.3; *m*/*z* (%)=310 (32) [M⁺], 231 (42), 202 (42), 178 (72), 115 (60), 77 (100). Anal. Calcd for (C₂₃H₁₈O): C, 89.00; H, 5.85; Found: C, 88.59; H, 5.87.

4.3.11. 3-((*E*)-**1**,**3**-Diphenyl-2-propenyl)-1*H*-indole (**3be**).²⁶ Pale yellow oil. ¹H NMR: δ =5.11 (d, *J*=7.3 Hz, 1H, CH=CH*CH*Ar), 6.43 (d, *J*=15.9 Hz, 1H, Ar*CH*=CH), 6.72 (dd, *J*=15.8 Hz, *J*=7.3 Hz, ArCH=*CH*CH), 6.86–6.89 (m, 1H, *CH*–NH), 6.96–7.06 (m, 1H, Ar), 7.10–7.46 (m, 13H, Ar), 7.97 (br s, 1H, NH).

4.3.12. 2-((*E*)-**1,3-Diphenyl-2-propenyl)-1***H***-pyrrole (3bf**). White solid, mp 71–73 °C. ¹H NMR: δ =4.86 (d, *J*=7.5 Hz, 1H, CH=CH*CH*Ar), 5.94–5.99 (m, 1H, *CH*-*pyrrole*), 6.17 (m, 1H, *CH*-*pyrrole*), 6.42 (d, *J*=15.8 Hz, 1H, Ar*CH*=CH), 6.59 (dd, *J*=15.8 Hz, *J*=7.5 Hz, ArCH=*CH*CH), 6.67–6.72 (m, 1H, *CH*-*pyrrole*), 7.16–7.40 (m, 10H, Ar), 7.85 (br s, 1H, NH). ¹³C NMR: δ =48.1, 106.8, 108.4, 117.4, 126.5, 127.0, 127.6, 128.5, 128.7, 128.8, 131.3, 133.0, 137.1, 142.3. IR (pellets): *v*=3386, 3083, 3058, 3029, 1599, 1552, 1491, 1449, 1415, 1396, 1271, 1200, 1112, 1095, 1062, 1027, 977, 959 cm⁻¹. GC–MS (EI): *t*_R=12.7; *m/z* (%)=259 (95) [M⁺], 180 (67), 115 (100), 77 (98). ESHRMS: calcd for C₁₉H₁₈N: 260.1447. Found: 259.1439.

4.3.13. (*E*)-1-Phenyl-3-(2-methylfuran-5-yl)-1-propene (3ca) and 3-phenyl-3-(2-methylfuran-5-yl)-1-propene (4ca).^{1b} Colorless oil. Compound 3ca: ¹H NMR (measured in a mixture with 4ca): δ =2.17 (s, 3H, *CH*₃), 3.41 (d, *J*=6.5 Hz, 2H, CH=CH*CH*₂), 5.64–5.88 (m, 2H, =*CH*-*furan*), 6.00–6.28 (m, 1H, ArCH=*CH*CH₂), 6.40 (d, *J*=15.8 Hz, 1H, Ar*CH*=CH), 7.02–7.32 (m, 5H, Ar). Compound 4ca: ¹H NMR (measured in a mixture with 3ca): δ =2.15 (s, 3H, *CH*₃), 4.59 (d, *J*=7.0 Hz, 1H, Ar*CH*CH=CH₂), 5.09 (td, *J*=10.1 Hz, *J*=1.4 Hz, 1H, CH=*CH*₂), 5.09 (td, *J*=10.1 Hz, *J*=1.4 Hz, 1H, Ar*CHCH*=CH₂), 7.02–7.32 (m, 5H, Ar).

4.3.14. (E)-1-Phenyl-3-(2,4-dimethoxyphenyl)-1-propene (3cb) and 3-phenyl-3-(2,4-dimethoxyphenyl)-1-propene (4cb).²⁷ Colorless oil. Compound 3cb: ¹H NMR (measured in a mixture with **4cb**): $\delta = 3.45$ (d, J = 5.0 Hz, 2H, CH= CHCH₂Ar), 3.76 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 6.30-6.48 (m, 3H, Ar*CH*=*CH*, Ar), 7.00–7.40 (m, 6H, Ar). ¹³C NMR (measured in a mixture with 4cb): $\delta = 32.9$, 55.3, 55.4, 98.6, 104.0, 121.0, 126.1, 126.9, 128.5, 129.4, 130.2, 130.4, 137.9, 158.2, 159.5. Compound 4cb: ¹H NMR (measured in a mixture with **3ca**): $\delta = 3.70$ (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.82–2.96 (m, 1H, CH=CH₂), 5.06 (d, J=6.6 Hz, 1H, ArCHCH=CH₂), 5.12-5.20 (m, 1H, CH=CH₂), 6.30-6.48 (m, 3H, ArCHCH=CH₂, Ar), 7.00-7.40 (m, 6H, Ar). IR (3cb/4cb, film): v=3025, 2936, 2834, 1614, 1588, 1505, 1465, 1291, 1208, 1156, 1038, 967 cm⁻¹. GC–MS (EI): $t_{\rm R}$ (4cb)=10.2; m/z (%)=254 (15) $[M^+]$, 138 (62), 115 (88), 91 (76), 77 (100); t_R (**3cb**)=11.6; m/z (%)=254 (100) [M⁺], 223 (48), 178 (40), 138 (44), 115

(100). ESHRMS: calcd for $C_{17}H_{19}O_2$: 255.1285. Found: 255.1383.

4.3.15. (*E*)-**1**-Phenyl-3-(4-methoxyphenyl)-1-propene (**3cc**).^{1b} Colorless oil. ¹H NMR: δ =3.47 (d, *J*=5.9 Hz, 2H, CH=CH*CH*₂Ar), 3.77 (s, 3H, O*CH*₃), 6.24–6.48 (m, 2H, Ar*CH*=*CH*), 6.84 (d, *J*=8.3 Hz, 2H, Ar), 7.10–7.40 (m, 7H, Ar).

4.3.16. (*E*)-1-Phenyl-3-(benzofuran-2-yl)-1-propene (3cd). Pale yellow oil. ¹H NMR: δ =3.70 (d, *J*=6.7 Hz, 2H, CH=CH*C*H₂Ar), 6.33 (dt, *J*=15.8 Hz, *J*=6.7 Hz, ArCH=*CH*), 6.39–6.43 (m, 1H, O–C=*CH*), 6.52 (d, *J*=15.9 Hz, Ar*CH*=CH), 7.08–7.50 (m, 9H, Ar). ¹³C NMR: δ =32.3, 102.9, 111.0, 120.6, 122.7, 123.6, 124.7, 126.4, 127.6, 128.7, 129.0, 132.8, 137.2, 155.0, 157.2. IR (film): *ν*= 3058, 3028, 1598, 1495, 1454, 1422, 1253, 1163, 965 cm⁻¹. GC–MS (EI): *t*_R=11.1; *m/z* (%)=234 (100) [M⁺], 157 (30), 131 (45), 128 (67), 115 (52), 102 (30), 77 (57). Anal. Calcd for (C₁₇H₁₄O): C, 87.15; H, 6.02; Found: C, 87.33; H, 6.14.

4.3.17. 2-Benzhydryl-5-methylfuran (3da).^{23b} Colorless oil. ¹H NMR: δ =2.23 (s, 3H, *CH*₃), 5.43 (s, 1H, Ar*CH*), 5.78 (d, *J*=3.0 Hz, 1H, =*CH*-furan), 5.88 (d, *J*=3.0 Hz, 1H, =*CH*-furan), 7.12–7.42 (m, 10H, Ar).

4.3.18. 1-((**2**,**4**-**Dimethoxyphenyl**)**diphenylmethane** (**3db**). White solid, mp 120–124 °C. ¹H NMR: δ =3.60 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 5.83 (s, 1H, Ar*CH*), 6.35 (dd, *J*=8.4 Hz, *J*=2.4 Hz, 1H, Ar), 6.43 (d, *J*=2.3 Hz, 1H, Ar), 6.73 (d, *J*=8.4 Hz, 1H, Ar), 7.00–7.38 (m, 10H, Ar). ¹³C NMR: δ =49.3, 55.3, 55.6, 98.7, 103.8, 125.3, 126.1, 128.2, 129.5, 130.9, 144.3, 158.1, 159.5. IR (pellets): ν =3056, 2951, 2830, 1611, 1585, 1501, 1467, 1451, 1290, 1259, 1207, 1117, 1045, 835 cm⁻¹. GC–MS (EI): *t*_R=13.5; *m*/*z* (%)=304 (100) [M⁺], 289 (25), 273 (22), 227 (73), 165 (53), 91 (100). ESHRMS: calcd for C₂₁H₂₁O₂: 305.1542. Found: 305.1540.

4.3.19. 1-((**4**-Methoxyphenyl)diphenylmethane (3dc).²⁸ White solid, mp 55–57 °C. ¹H NMR: δ =3.74 (s, 3H, OCH₃), 5.49 (s, 1H, Ar*CH*), 6.77–6.85 (m, 2H, Ar), 6.98–7.32 (m, 12H, Ar).

4.3.20. 2-Benzhydrylbenzofuran (3dd). White solid, mp 110–114 °C. ¹H NMR: δ =5.85 (s, 1H, Ar*CH*), 6.54 (s, O–C=*CH*), 7.36–7.86 (m, 14H, Ar). ¹³C NMR: δ =51.5, 105.8, 111.3, 120.8, 122.8, 123.9, 127.1, 128.6, 128.7, 129.0, 141.2, 155.2, 160.0. IR (pellets): ν =3064, 3027, 1598, 1582, 1494, 1451, 1252, 1163, 1148, 1130, 1104, 1079, 1029, 1004, 957 cm⁻¹. GC–MS (EI): $t_{\rm R}$ =12.3; *m/z* (%)=284 (17) [M⁺], 207 (62), 178 (90), 77 (100). Anal. Calcd for (C₂₁H₁₆O): C, 88.70; H, 5.67; Found: C, 88.60; H, 5.77.

4.3.21. 2-(1-(4-Methoxyphenyl)ethyl)-5-methylfuran (**3ea**).^{23b} Pale yellow oil. ¹H NMR: δ =1.53 (d, *J*=7.2 Hz, 3H, ArCH*CH*₃), 2.21 (s, 3H, *CH*₃*-furan*), 3.76 (s, 3H, O*CH*₃), 4.01 (q, *J*=7.1 Hz, Ar*CHC*H₃), 5.85–5.87 (m, 2H, =*CH-furan*), 6.83 (d, *J*=8.7 Hz, 2H, Ar), 7.13 (d, *J*=8.7 Hz, 2H, Ar).

4.3.22. 1-Methoxy-4-(1-(2,4-dimethoxyphenyl)ethyl)benzene (3eb).²⁹ Colorless oil. ¹H NMR: δ =1.52 (d, *J*=7.2 Hz, 3H, CH*CH*₃), 3.75 (s, 3H, O*CH*₃), 3.76 (s, 3H, O*CH*₃), 3.77 (s, 3H, O*CH*₃), 4.43 (q, *J*=7.2 Hz, 1H, *CH*CH₃), 6.39–6.46 (m, 2H, Ar), 6.80 (d, *J*=8.3 Hz, 2H, Ar), 7.01 (d, *J*=9.1 Hz, 1H, Ar), 7.14 (d, *J*=8.3 Hz, 2H, Ar).

4.3.23. 1,1-Bis(4-methoxyphenyl)ethane (3ec).³⁰ White solid, mp 67–69 °C. ¹H NMR: δ =1.58 (d, *J*=7.1 Hz, 3H, CH*CH*₃), 3.77 (s, 6H, O*CH*₃), 4.06 (q, *J*=7.1 Hz, 1H, *CH*CH₃), 6.82 (d, *J*=8.7 Hz, 4H, Ar), 7.12 (d, *J*=8.7 Hz, 4H, Ar).

4.3.24. 2-(1-(4-Methoxyphenyl)ethyl)benzofuran (3ed). White solid, mp 43–45 °C. ¹H NMR: δ =1.66 (d, *J*=7.2 Hz, 3H, CH*CH*₃), 3.73 (s, 3H, O*CH*₃), 4.19 (q, *J*=7.1 Hz, 1H, *CH*CH₃), 6.37–6.41 (m, 1H, O–C=*CH*), 6.85 (d, *J*=8.7 Hz, 2H, Ar), 7.14–7.24 (m, 4H, Ar), 7.36–7.52 (m, 2H, Ar). ¹³C NMR: δ =20.6, 38.9, 55.3, 102.0, 111.1, 114.1, 120.6, 122.6, 123.5, 128.6, 128.8, 135.5, 155.0, 158.5, 162.6. IR (film): *v*=2965, 2933, 2835, 1610, 1584, 1512, 1454, 1377, 1299, 1265, 1248, 1175, 1147, 1108, 1069, 1057, 1031, 1009, 934 cm⁻¹. GC–MS (EI): *t*_R=11.1; *m/z* (%)=252 (35) [M⁺], 237 (100), 165 (30). Anal. Calcd for (C₁₇H₁₆O₂): C, 80.93; H, 6.39; Found: C, 80.71; H, 6.41.

4.3.25. 3-(1-(4-Methoxyphenyl)ethyl)-1*H***-indole (3ee).** White solid, mp 137–140 °C. ¹H NMR: δ =1.67 (d, *J*=7.1 Hz, 3H, CHCH₃), 3.76 (s, 3H, OCH₃), 4.32 (q, *J*=7.1 Hz, *CH*CH₃), 6.75–6.85 (m, 2H, Ar), 6.95–7.05 (m, 2H, Ar), 7.10–7.23 (m, 3H, Ar), 7.30–7.40 (m, 2H, Ar), 7.93 (br s, 1H, NH). ¹³C NMR: δ =22.7, 36.2, 55.3, 111.2, 113.8, 119.3, 119.8, 121.2, 121.8, 122.0, 127.0, 128.5, 136.8, 139.2, 157.8. IR (pellets): *v*=3367, 2970, 2863, 1608, 1509, 1459, 1441, 1424, 1338, 1264, 1237, 1178, 1101, 1024 cm⁻¹. GC–MS (EI): *t*_R=13.4; *m/z* (%)=251 (37) [M⁺], 236 (100), 192 (27). ESHRMS: calcd for C₁₇H₁₈NO: 252.1388. Found: 251.1383.

4.3.26. 2-(**1**-(**4**-**Methoxyphenyl**)**ethyl**)-**1***H*-**pyrrole** (**3ef**).³¹ Pale yellow oil. ¹H NMR: δ =1.49 (d, *J*=7.2 Hz, 3H, CH*CH*₃), 3.68 (s, 3H, O*CH*₃), 3.94 (q, *J*=7.2 Hz, 1H, *CH*CH₃), 5.95–6.00 (m, 1H, *CH*-*pyrrole*), 6.03–6.09 (m, 1H, *CH*-*pyrrole*), 6.03–6.09 (m, 1H, *CH*-*pyrrole*), 6.70–6.79 (m, 2H, Ar), 6.97–7.05 (m, 2H, Ar), 7.60 (br s, 1H, NH).

4.3.27. Preparation of (benzhydryloxy)diphenylmethane (7d).³² A 50 mL round-bottomed flask was charged with benzhydrol (184 mg, 1.0 mmol), CH₂Cl₂ (1 mL), and CF₃SO₃H (4 µL, 0.05 mmol) at 0 °C. The mixture was heated (oil bath, 50 °C) for 1 h. After cooling to room temperature, saturated NaHCO₃ (5 mL) was added and the mixture was extracted with Et₂O (5×5 mL). Organic phase was dried over MgSO₄, filtered, solvent was removed under reduced pressure, and the product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 98/2, then petroleum ether/ethyl acetate 95/5) to yield 7d (152 mg, 0.43 mmol, 87%). ¹H NMR: δ =5.32 (s, 2H, *CH*–O), 7.12–7.34 (m, 20H, Ar).

References and notes

 (a) Nay, B.; Collet, M.; Lebon, M.; Chèze, C.; Vercauteren, J. *Tetrahedron Lett.* **2002**, *43*, 2675–2678; (b) Malkov, A. V.; Davis, S. L.; Baxendale, I. R.; Mitchell, W. L.; Kočovský, P. J. Org. Chem. **1999**, 64, 2751–2764; (c) Malkov, A. V.; Spoor, P.; Vinader, V.; Kočovský, P. J. Org. Chem. **1999**, 64, 5308–5311.

- (a) Noji, M.; Ohno, T.; Fuji, K.; Futaba, N.; Tajima, H.; Ishii, K. J. Org. Chem. 2003, 68, 9340–9347; (b) Shiina, I.; Suzuki, M. Tetrahedron Lett. 2002, 43, 6391–6394; (c) Kotsuki, H.; Oshisi, T.; Inoue, M. Synlett 1998, 255–256; (d) Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S.-I. J. Org. Chem. 1997, 62, 6997–7005.
- Choudhury, J.; Podder, S.; Roy, S. J. Am. Chem. Soc. 2005, 127, 6162–6163.
- 4. Tsukada, N.; Yagura, Y.; Sato, T.; Inoue, Y. Synlett 2003, 1431–1434.
- Selected recent examples: (a) Okumura, K.; Yamashita, K.; Hirano, M.; Niwa, M. J. Catal. 2005, 234, 300–307; (b) Rác, B.; Mulas, G.; Csongrádi, A.; Lóki, K.; Molnár, Á. Appl. Catal. 2005, 282, 255–265; (c) Mantri, K.; Komura, K.; Kubota, Y.; Sugi, Y. J. Mol. Catal. A: Chem. 2005, 236, 168– 175; (d) Macquarrie, D. J.; Tavener, S. J.; Harmer, M. A. Chem. Commun. 2005, 2363–2365; (e) Salavati-Niasari, M.; Hasanalian, J.; Najafian, H. J. Mol. Catal. A: Chem. 2004, 209, 209–214; (f) Shrigadi, N. B.; Shinde, A. B.; Samant, S. D. Appl. Catal. 2003, 252, 23–35; (g) Hu, X.; Chuah, G. K.; Jaenicke, S. Appl. Catal. 2001, 217, 1–9; (h) Choudary, V. R.; Jana, S. K. J. Catal. 2001, 201, 225–235; (i) Deshpande, A. B.; Bajpai, A. R.; Samant, S. D. Appl. Catal. 2001, 209, 229–235; (j) Smith, K.; Pollaud, G. M.; Matthews, I. Green Chem. 1999, 1, 75–81.
- (a) Mertins, K.; Iovel, I.; Kischel, J.; Zapf, A.; Beller, M. Adv. Synth. Catal. 2006, 348, 691–695; (b) Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 3913–3917; (c) Mertins, K.; Iovel, I.; Kishel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 238–242.
- (a) Anastas, P. T.; Warner, J. C. Green Chemistry, Theory and Practice; Oxford University Press: Oxford, 1998; (b) Lancaster, M. Green Chemistry, An Introductory Text; Royal Society of Chemistry: Cambridge, 2002.
- (a) Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.; Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179–4182; (b) Li, Z.; Zhang, J.; Brouwer, C.; Yang, C.-G.; Reich, N. W.; He, C. Org. Lett. 2006, 8, 4175–4178; (c) Motokura, K.; Nakagiri, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K. Org. Lett. 2006, 8, 4617–4620.
- Zhang, L.; Sun, J.; Kozmin, S. A. Tetrahedron 2006, 62, 11371–11380.
- 10. Kotsuki, H.; Ohishi, T.; Inoue, M.; Kojima, T. *Synthesis* **1999**, 602–606.
- Wang, B.-Y.; Jiang, R.-.S.; Li, J.; Shi, M. Eur. J. Org. Chem. 2005, 4002–4008.
- 12. Fukuzawa, S.-i.; Tsuchimoto, T.; Hiyama, T. J. Org. Chem. 1997, 62, 151–156.
- Hashmi, A. S. K.; Schwarz, L.; Rubenbauer, P.; Blanco, M. C. Adv. Synth. Catal. 2006, 348, 705–708.
- 14. Shirakawa, S.; Kobayashi, S. Org. Lett. 2006, 8, 4939-4942.
- (a) Anderson, L. L.; Arnold, J.; Bergman, R. G. J. Am. Chem. Soc. 2005, 127, 14542–14543; (b) Cherian, A. E.; Domski, G. J.; Rose, J. M.; Lobkovsky, E. B.; Coates, G. W. Org. Lett. 2005, 7, 5135–5137.
- Sarvari, M. H.; Sharghi, H. Helv. Chim. Acta 2005, 88, 2282– 2287.
- 17. Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew. Chem., Int. Ed. **2006**, *45*, 2605–2609.

- Sanz, R.; Martínez, A.; Álvarez-Gutiérrez, J. M.; Rodríguez, F. Eur. J. Org. Chem. 2006, 1383–1386.
- Darbeau, R. W.; White, E. H. J. Org. Chem. 1997, 62, 8091– 8094.
- Espeel, P. H.; Janssens, B.; Jacobs, P. A. J. Org. Chem. 1993, 58, 7688–7693.
- Sanz, R.; Martínez, A.; Miguel, D.; Álvarez-Gutiérrez, J. M.; Rodríguez, F. Adv. Synth. Catal. 2006, 348, 1841–1845.
- 22. Caution: direct addition of triflic acid to 2-methylfuran gives a violent reaction, see Section 4.3 for adapted procedure.
- 23. (a) For 2-alkylated furans, see Refs. 1b and 6b; (b) For 4-alkylated 1,3-dimethoxybenzenes, see: Hofmann, M.; Hampel, N.; Kanzian, T.; Mayr, H. Angew. Chem., Int. Ed. 2004, 43, 5402–5405; (c) For 4-alkylated anisoles, see Ref. 1b; (d) For 2-alkylated benzofurans, see: Jaouhari, R.; Dixneuf, P. H. Inorg. Chim. Acta 1988, 145, 179–180; Colas, C.; Goeldner, M. Eur. J. Org. Chem. 1999, 1357–1366.

- 24. (a) For 3-alkylated indoles, see Refs. 1b and 21; (b) For 2-alkylated pyrroles, see: Jorapur, Y. R.; Lee, C.-H.; Chi, D. Y. *Org. Lett.* **2005**, *7*, 1231–1234 and references therein.
- Kabalka, G. W.; Dong, G.; Venkataiah, B. Org. Lett. 2003, 5, 893–895.
- 26. Bandini, M.; Melloni, A.; Umani-Ronchi, A. Org. Lett. 2004, 6, 3199–3202.
- 27. Bissel, P.; Nazih, A.; Sablong, R.; Lepoittevin, J.-P. Org. Lett. **1999**, *1*, 1283–1285.
- Newcomb, M.; Varick, T. R.; Goh, S.-H. J. Am. Chem. Soc. 1990, 112, 5186–5193.
- Ceraulo, L.; Filizzola, F.; Fontana, G.; Lamartina, L.; Natoli, M. Arkivoc 2002, 11, 123–141.
- Yonezawa, N.; Hino, T.; Shimizu, M.; Matsuda, K.; Ikeda, T. J. Org. Chem. 1999, 64, 4179–4182.
- Schumacher, D. P.; Hall, S. S. J. Org. Chem. 1981, 46, 5060– 5064.
- Miller, K. J.; Abu-Omar, M. M. Eur. J. Org. Chem. 2003, 1294– 1299.